Bacteria Foraging Reinforcement Learning for Risk-Based Economic Dispatch via Knowledge Transfer

نویسندگان

  • Chuanjia Han
  • Bo Yang
  • Tao Bao
  • Tao Yu
  • Xiaoshun Zhang
  • Josep M. Guerrero
چکیده

This paper proposes a novel bacteria foraging reinforcement learning with knowledge transfer method for risk-based economic dispatch, in which the economic dispatch is integrated with risk assessment theory to represent the uncertainties of active power demand and contingencies during power system operations. Moreover, a multi-agent collaboration is employed to accelerate the convergence of knowledge matrix, which is decomposed into several lower dimension sub-matrices via a knowledge extension, thus the curse of dimension can be effectively avoided. Besides, the convergence rate of bacteria foraging reinforcement learning is increased dramatically through a knowledge transfer after obtaining the optimal knowledge matrices of source tasks in pre-learning. The performance of bacteria foraging reinforcement learning has been thoroughly evaluated on IEEE RTS-79 system. Simulation results demonstrate that it can outperform conventional artificial intelligence algorithms in terms of global convergence and convergence rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of soft computing methods for Economic Dispatch in Power Systems

Economic dispatch problem is an optimization problem where objective function is highly non linear, non-convex, non-differentiable and may have multiple local minima. Therefore, classical optimization methods may not converge or get trapped to any local minima. This paper presents a comparative study of four different evolutionary algorithms i.e. genetic algorithm, bacteria foraging optimizatio...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

Stochastic Economic Load Dispatch Using Pareto Distribution with Multiple Fuels Local Convex By Bacterial Foraging Optimization

In this paper, Stochastic Economic Load Dispatch problem with Multiple Fuels is solved using Pareto distribution with local convex optimization by bacterial foraging approach. Bacterial foraging optimization is swarmed intelligence technique used to solve the problem of the power system. The algorithm is based on the group foraging behavior of Escherichia coli (E-coli) bacteria present in the h...

متن کامل

Economic Load Dispatch using PSO Algorithm Based on Adaptive Learning Strategy Considering Valve point Effect

Abstract: In recent years due to problems such as population growth and as a result increase in demand for electrical energy, power systems have been faced with new challenges that not existed in the past. One of the most important issues in modern power systems is economic load dispatch, which is a complex optimization problem with a large number of variables and constraints. Due to the comple...

متن کامل

An Efficient Meta Heuristic Algorithm to Solve Economic Load Dispatch Problems

The Economic Load Dispatch (ELD) problems in power generation systems are to reduce the fuel cost by reducing the total cost for the generation of electric power. This paper presents an efficient Modified Firefly Algorithm (MFA), for solving ELD Problem. The main objective of the problems is to minimize the total fuel cost of the generating units having quadratic cost functions subjected to lim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017